The quaternion group in plane geometry

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypermultiplets, Hyperkähler Cones and Quaternion-Kähler Geometry

We study hyperkähler cones and their corresponding quaternion-Kähler spaces. We present a classification of 4(n − 1)-dimensional quaternionKähler spaces with n abelian quaternionic isometries, based on dualizing superconformal tensor multiplets. These manifolds characterize the geometry of the hypermultiplet sector of perturbative moduli spaces of type-II strings compactified on a Calabi-Yau ma...

متن کامل

Tensor supermultiplets and toric quaternion - Kähler geometry †

We review the relation between 4n-dimensional quaternion-Kähler metrics with n + 1 abelian isometries and superconformal theories of n + 1 tensor supermultiplets. As an application we construct the class of eight-dimensional quaternion-Kähler metrics with three abelian isometries in terms of a single function obeying a set of linear second-order partial differential equations. Talk given by F.S...

متن کامل

Affine circle geometry over quaternion skew fields

We investigate the affine circle geometry arising from a quaternion skew field and one of its maximal commutative subfields.

متن کامل

Quaternion Higgs and the Electroweak Gauge Group

We show that, in quaternion quantum mechanics with a complex geometry, the minimal four Higgs of the unbroken electroweak theory naturally determine the quaternion invariance group which corresponds to the Glashow group. Consequently, we are able to identify the physical significance of the anomalous Higgs scalar solutions. We introduce and discuss the complex projection of the Lagrangian density.

متن کامل

spherical interpretation of plane geometry in menelaus of alexandria’s sphaerica

menelaus’ sphaerica can be considered as the most important classical text in the tradition of spherics books, written with the aim of the solution of problems arising in spherical astonomy. euclid’s elements is the the most important book on plane geometry. this article aims at a comparative study of menelaus’s sphaerica and euclid’s elements, to show that book i of sphaerica is an attempt to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1968

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1968-0234346-9